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Abstract. We explore the behaviour of the dipolar-coupled Ising magnet, LiHoxY1−xF4, in a
transverse magnetic field. The transverse field, applied perpendicular to the Ising axis, introduces
quantum channels for relaxation, thereby continuously depressing the spin-ordering temperature
to zero. We compare the classical (thermally driven) and the quantum (transverse-field-driven)
transitions for both the pure ferromagnet, LiHoF4, and the spin glass, LiHo0.167Y0.833F4, and
we discuss the implications of these results for theT = 0 disordered ferromagnet(x = 0.5).
Finally, we contrast these high-resolution studies of model quantum transitions in insulating
magnets with the quantum critical behaviour of the highly correlated Mott–Hubbard metals
V2O3 and Ni(S, Se)2.

1. Introduction

What is the ground state and what is the dynamics of 1023 randomly distributed Ising dipoles?
It is easy to write down the spin interaction energy:Eij = sisj J (1 − cos2 θij )/r3

ij , where
si, sj = ±1 are the Ising spin variables,J = g2µ2

B is the coupling constant,θij is the angle
formed by the Ising axis and the vector connecting the spins, andrij is the distance between
spins. But it is difficult to solve for the lowest-energy state because the 1/r3 dependence is
long range, involving dipoles well beyond nearest neighbours, and the angular dependence
introduces competing ferromagnetic and antiferromagnetic(55◦ 6 θij 6 125◦) interactions.
In the concentrated limit, Luttinger and Tisza [1] showed that an underlying lattice contains
the requisite information to establish true long-range magnetic order. At sufficient dilution,
however, the dipoles have many sites to choose from; they sit essentially randomly in space,
and the possibility arises for glassy behaviour [2].

We have studied just such a model dipolar system and find with increasing dilution a
crossover from pristine ferromagnet to reduced-moment ferromagnet to magnetic glass [3].
LiHoxY1−xF4 is an isostructural dilution series where magnetic Ho3+ and non-magnetic
Y3+ ions randomly occupy the rare-earth (R) sites in the body-centred tetragonal LiRF4

lattice [4]. The single-ion anisotropy is Ising with the moments(µeff = 7µB) derived from
the ground-state doublet of Ho3+ lying parallel to thec-axis. The dominant interaction
between moments is dipolar, as directly demonstrated by neutron diffraction [3, 5]. The
pure compound, LiHoF4, is a ferromagnet with an essentially perfect mean-field transition
at Tc = 1.53 K [6]. The mean-field behaviour to within logarithmic corrections reflects the
long-range nature of the dipole–dipole interaction, while the relatively low-energy scale for
the transition reflects the weakness of the dipolar coupling compared to the usual exchange
mechanism.
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Figure 1. The phase diagram as a function of dipole concentrationx for the Ising magnet/glass,
LiHoxY1−xF4. PM = paramagnet, FM= ferromagnet, SG= spin glass. In the dilute limit, the
system only freezes for temperatureT = 0 (arrow). (From reference [3].)

As can be seen in the phase diagram of figure 1, the Curie temperature is depressed
linearly with dipole concentration down to at least 50% dilution:Tc(x) = xTc(x = 1). With
only 30% of the sites occupied by magnetic dipoles, the long-range ferromagnetic order
survives, but there are decoupled regions of unaligned spins yielding an incomplete global
magnetic moment [7]. By 17% dipole (Ho) concentration, the disorder (from dilution) and
frustration (from competing interactions) dominate and a classic spin-glass transition ensues
with a transition temperatureTg = 0.13 K [8]. Finally, at the lowest dipole concentrations,
the spin glass is replaced by a qualitatively different ground state which does not appear to
freeze at finite temperature [9], which we have coined a ‘decoupled cluster glass’.

In this discussion, we will concentrate on the contrasting behaviour of the pure
ferromagnet,x = 1, and the spin glass,x = 0.167. True to the title, however, it
is the quantum nature of the problem which most interests us. The classical, thermally
driven transitions in the Ising magnet/glass LiHoxY1−xF4 can be converted into quantum
transitions driven by a transverse magnetic fieldHt at T = 0. The transverse field, applied
perpendicular to the Ising axis, mixes the eigenfunctions of the ground-state Ising doublet
with the previously inaccessible excited states, leading to a rapid increase in the relaxation
due to the existence of new tunnelling modes. This effect can be seen most clearly in
the spin glass which is characterized by a broad spectrum of relaxation times. We plot
in figure 2 the dissipative response as a function of frequencyf at a temperature 35%
above the glass transition. The application of even a few kOe of transverse field radically
affects the time-scale of the response; the peak frequency,fp, of the imaginary part of
the susceptibility,χ ′′(f ), increases by two orders of magnitude by 6 kOe. Furthermore,
it is the long-time (low-frequency) modes which are shorted out by tunnelling. This is
demonstrated in the scaling plot of figure 3, where it is the low-frequency tails ofχ ′′(f )

which are preferentially suppressed.
A complete suppression of freezing can be obtained for laboratory values ofHt . It is

then possible to investigate quantitatively with exquisite resolution the influence of either
classical or quantum fluctuations on the critical behaviour in the same physical system.
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Figure 2. The dissipative response over many decades in frequency for the spin glass atT > Tg

for a series of transverse fieldsHt in 1 kOe intervals. The glassy response speeds up dramatically
asHt introduces new quantum routes to relaxation. (From reference [8].)

Figure 3. The curves of figure 2 scaled by peak frequency and peak height. The long-time
modes are preferentially suppressed by the increased tunnelling in a transverse field.

Moreover, we can independently introduce the variables of disorder and frustration simply
by moving across the phase diagram of figure 1.

Single crystals of LiHoxY1−xF4 provide a model system for studying quantum critical
behaviour in clean, insulating magnets and magnetic glasses. There is no confusion
introduced by charge carriers—the peculiar mix of the spin and charge degrees of freedom
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in transition metal oxides [10], the apparent ‘non-Fermi-liquid’ behaviour of highly
correlated f-electron compounds [11, 12], the unusual normal-state properties of the high-
Tc superconducting cuprates [13–16]—where, in each case, the remarkable properties have
been ascribed to the proximity of aT = 0 quantum critical point. On the other hand,
without charge carriers, there cannot be these types of remarkable properties! Hence, we
present as well the quantum critical behaviour of theT = 0 pressure-driven transitions
from spin-density-wave to paramagnet in the correlated metal vanadium sesquioxide and
from insulator to metal in the Mott–Hubbard compound Ni(S, Se)2. In both these cases,
the physics is sufficiently complicated that it is not possible to independently control the
physical variables and it is difficult to model the behaviour from first principles (cf. LiHoF4).
Nonetheless, we are able to probe the singular mixture of statics and dynamics stirred up
by quantum fluctuations.

2. The model magnet in a transverse field

LiHoF4 in an external fieldHt is the experimental realization of the simplest quantum
spin model, namely the Ising magnet in a transverse magnetic field. The corresponding
Hamiltonian is

H =
N∑
i,j

Jij σ
z
i σ z

j − 0

N∑
i

σ x
i (1)

where theσs are Pauli spin matrices, theJij s are longitudinal couplings, and0 is a transverse
field. Since the commutator [H, σ z] is finite when 0 6= 0, zero-point fluctuations are
germane at low temperatures. These fluctuations increase with0, which tunes an order–
disorder transition atT = 0.

The magnetic fieldHt is applied perpendicular to the easy (c-) axis for the Ho spins.
The first excited crystal-field level is 9.4 K above the ground-state doublet; at the low
temperatures(0.025< T < 2 K) of our experiments, only the Ising doublet is appreciably
populated. It then can be split in a continuous fashion with great precision by the laboratory
field Ht . The splitting0 plays the role of the transverse field in equation (1), while the
doublet plays the role of the spin-1/2 eigenstates.

We map out the transverse-field–temperature phase diagram for the pure Ising
ferromagnet in figure 4 [17]. The phase boundary follows from the divergence of the linear
susceptibility,χ ′(T , Ht), in precise scans of both temperature and transverse magnetic field.
We illustrate such scans in reduced temperature and reduced field at the same point in the
phase diagram (Tc ∼ 0.1 K and Hc

t ∼ 49 kOe, respectively) in figure 5. As expected,
the critical exponent (slope) is the same, but varying the transverse field permits higher-
resolution studies of the critical point, closer than 10−3 in the reduced variable.

The critical exponent for the divergence of the susceptibility retains its mean-field
value,γ = 1 (within error bars), at all temperatures studied, down to 3% ofTc(Ht = 0).
Hence, we conclude that both the classical and quantum limits in LiHoF4 exhibit mean-field
character. This observation verifies the long-standing and elegant theory [18] identifying
(T = 0) quantum phase transitions ind dimensions with thermal phase transitions ind + 1
dimensions.

Upon observing mean-field-like critical behaviour in both the classical and quantum
limits in LiHoF4, it is natural to ask whether the entire phase diagram can be explained
in terms of mean-field theory. The exact mean-field phase boundary can be calculated by
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Figure 4. The experimental phase boundary (filled circles) for the pure ferromagnet in the
transverse-field–temperature plane. The dashed line is from a mean-field theory including
only the electronic spin degrees of freedom; the solid line is from a full mean-field theory
incorporating the nuclear hyperfine interaction (equation (2)). Both theories have the same two
fitting parameters. (From reference [17].)

Figure 5. Mean-field critical behaviour of the magnetic susceptibility in theT → 0 limit as
functions of reduced temperature (open circles,Tc = 0.114 K, Ht = 49.0 kOe) and reduced
transverse field (filled circles,Hc

t = 49.3 kOe,T = 0.100 K). (From reference [17].)

solving the Hamiltonian for a single Ho3+ ion (J = 8, I = 7/2) self-consistently:

H = Vc − g⊥µBHt Ĵx + A(Î Ĵ ) − 2J0〈Ĵz〉Ĵz (2)

whereVc represents the zero-field crystal-field operator [19],g⊥ is the transverseg-factor,
A is the hyperfine coupling strength, andJ0 is an averaged spin–spin longitudinal coupling
constant. The hyperfine term arises from the interaction of the Ho nuclear spins with the
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electronic states through a core polarization effect [4, 20]. For LiHoF4, both heat capacity
[4] and hyperfine resonance [21] measurements at lowT give A = 0.039 K = (A‖)(g/g‖),
whereA‖ = 0.43 K, the Land́e g-factorg = 1.25, and the ground-state longitudinalg-factor
g‖ = 13.8.

A solution for Tc as a function ofHt is found by fixingHt and then calculating〈Ĵz〉
self-consistently, starting at a high temperature and then decreasingT in small steps until
a non-zero (spontaneous) magnetization is observed. The hyperfine interaction effectively
mixes the nuclear and electronic eigenstates together; therefore, the solution proceeds by
diagonalizing equation (2) in a(136× 136) eigenfunction space (17 crystal-field states× 8
nuclear states). The solution is shown in figure 4 as the solid line, providing an excellent
account of the experimental data. We find best-fit valuesJ0 = 0.0270± 0.0005 K and
g⊥ = 0.74± 0.04. The valueJ0 = 0.0270 K ' 2Tc(Ht = 0)(g/g‖)2. The experimentally
determined value ofg⊥ is remarkably close to the single-ion Landé g-factor given the large
uncertainty in the matrix elements ofJx which connect the ground-state and excited-state
crystal-field levels. These matrix elements are calculated from the eigenstates ofVc and
depend on measurements which not only contain statistical errors>25%, but are interpolated
from the dilute limit (lightly doped LiYF4) [19].

We can illuminate the underlying physics and recover the more conventional mean-
field form of the phase diagram by fixingJ0 and g⊥ to their best-fit values and setting
A = 0 in equation (2). Solving self-consistently for the magnetization gives the dashed
line in figure 4. At high temperature,J is the only pertinent quantum number. At lowT ,
however, the eigenstates ofÎ and Ĵ are slaved together, and an effective composite spin
(I + J) raises the transverse-field scale required to destroy the ferromagnetic state. Hence,
it is clear that the upturn in the phase boundary forT < 0.6 K results directly from the
inclusion of the well-known Ho3+ hyperfine term in the Hamiltonian.

Figure 6. The transverse-field dependence of the susceptibility in the paramagnet for two
temperatures. The solid line is a first-principles calculation with parameters fixed by the fit to
the phase boundary of figure 4. (From reference [17].)

As a further test that the full mean-field Hamiltonian of equation (2) is an accurate
description of the physics, we use it to calculate the susceptibilityχ ′(Ht) of LiHoF4 in
the paramagnet. The calculation is performed by adding a small(∼10−3 Oe) longitudinal
field hz to the Hamiltonian and solving self-consistently for the magnetizationMz with no
floating parameters. The susceptibilityχ ′ is thenMz/hz, where we have checked explicitly
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that no higher-order terms inhz are present. We plot in figure 6 the measuredχ ′(Ht ) at two
temperatures, one in the classical regime (T = 1.018 K) and one in the quantum regime
where the hyperfine term has a large effect (T = 0.200 K), together with the calculated
values ofχ ′. The congruence of experiment and theory shows that a complete mean-field
treatment can predict accurately both the functional form and the absolute value of the
susceptibility as it falls off in the paramagnet with increasing transverse field.

Figure 7. The phase diagram for the spin glass in a transverse field. Filled diamonds follow
from low-frequency measurements ofχ ′′

1 , open circles from the high-frequency response, and
filled squares from thef → 0 divergence ofχ ′

3. (Following reference [22].)

3. From classical to quantum glass

We plot in figure 7 the phase diagram analogous to figure 4 for the Ising spin glass,
LiHo0.167Y0.833F4. The different symbols represent different experimental signatures of
the onset of glassiness, including the low-frequency dissipative response [8], an unexpected
high-frequency characteristic also seen in supercooled liquids [22], and the divergence of the
static non-linear susceptibility [23]. The complexity of spin-glass interactions and order rules
out any attempt at simple mean-field modelling, but it is clear from inspection that thermal
fluctuations (Tg = 0.13 K) are far more efficient than quantum fluctuations (0g = 0.98 K)
in destroying the ordered state.

As in the case of the pure LiHoF4, we should like to compare the critical behaviour in
the classical and quantum limits. By contrast to the ferromagnet, the spin glass has zero net
magnetization, making the linear magnetic susceptibility an unsatisfactory critical parameter.
The non-linear susceptibility, however, represents a higher-order correlation function and it
is believed to couple to the spin-glass order parameter. The divergence of the lowest-order
non-linear susceptibility,χ ′

3, at the classical spin-glass transition is seen clearly in figure 8,
as is the peaked, but non-diverging form ofχ ′

1 plotted on the same axis.
We follow the static critical response of the non-linear susceptibility down to low

temperature and high transverse field in figure 9. The sharp divergence measured in the
classical limit becomes suppressed and effectively disappears asT → 0. By T = 0.025 K,
χ ′

3 only shows a flat maximum. The (unscaled) overlap of theχ ′
3(Ht) data above 12 kOe

defines the regime where the splitting0 of the Ising doublet dominates any thermal or
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Figure 8. Divergence of the non-linear susceptibilityχ3 at the classical spin-glass transition.
The linear susceptibilityχ1 is rounded at the 1.5 Hz measuring frequency.

Figure 9. The evolution of the non-linear susceptibility at the spin-glass transition asT → 0.
The clear divergence in the classical limit is quenched in the low-T , large-Ht quantum limit.
(Following reference [23].)

spin–spin interaction energy.
The quenching of the divergence of the non-linear susceptibility in the quantum limit

raises the question of whether a well-defined spin-glass transition still occurs. We show
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in figure 10 simultaneous measurements of the imaginary part of the linear susceptibility
in the zero-frequency limit. There is a clear dynamical signature of the transition at all
temperatures, even sharpening at lowT and highHt . The large dissipation at low transverse
field is due to the development of a flat, frequency-independent tail inχ ′′

1 (f → 0) [8],
which, by the fluctuation-dissipation theorem, corresponds to characteristic 1/f noise in the
spin-glass magnetization [24].

Mean-field treatments of both infinite-range quantum Ising [25] and quantum rotor
[26] spin glasses predict unusual behaviour for the non-linear susceptibility at theT = 0
transition, but retain its divergence. Specifically, they giveγeff = 1/2 and a phase boundary
0g(T ) − 0g(T = 0) ∼ T 2 at low T . Our experiment yieldsγeff < 1/2 at all T measured,
with an essentially linear phase boundary. If we attempt to fit the weak divergence ofχ3

with transverse field to a critical form for the lower temperatures, then we are faced with
the rare situation of a progressively decreasing, temperature-dependent critical exponent,
γeff , indistinguishable from zero byT = 0.025 K. More likely, theT = 0 quantum spin-
glass transition is first order. While the non-ergodicity of the spin-glass state precludes the
standard test of hysteresis at a first-order transition, this hypothesis is consistent with both
the abrupt onset of linear dissipation and the absence of a pre-transitional divergence of
χ3 (and the spin-glass correlation length). Moreover, in quantum systems of finite size,
first-order transitions in the form of level crossings are the rule rather than the exception. If
low-dimensional systems serve as a guide [27], then level crossings associated with strong
but relatively rare bonds dominate the transition into the spin-glass state.

4. Implications

The classical and quantum limits are strikingly similar in the pure, dipolar-coupled, Ising
ferromagnet; it would be difficult for them to be more dissimilar in the dipolar-coupled, Ising
spin glass. Yet, there is an intermediate case: the full-moment, but disordered ferromagnets
with dipole concentrations between 0.5 and 1. With the quantitative understanding and
modelling tools that we have developed for the pure ferromagnet in a transverse magnetic
field, it should be possible to use LiHoF4 as a quantitative benchmark for the effects of
disorder on a quantum critical point. Will the quantum phase transition in LiHo0.5Y0.5F4

remain continuous and mean-field-like or will it be first order? Is it the disorder or the
frustration which plays the key role at theT = 0 spin-glass transition? To that end, it is
possible as well to probe the effects of frustration alone—no disorder—through analogous
transverse-field studies of pure, layered antiferromagnets such as LiErF4. Finally, it is not
the phase boundary itself which holds all of the salient information about the influence
of quantum mechanics. It should be possible to compare thermal(T ) and quantum(Ht)

‘excursions’ deep in the ordered state, of special interest for the tunable tunnelling of domain
walls in the ferromagnet and the exploration of the complicated free-energy surface in the
spin glass.

5. Correlated metals

Barely delocalized and strongly correlated electrons diffusing in a disordered medium
are prone to exhibiting unusual magnetic order. This tendency towards reduced-moment
magnetism in the metal certainly complicates models of the Mott–Hubbard metal–insulator
transition. It also offers a unique opportunity to study the behaviour of an itinerant-fermion
system in the immediate vicinity of a quantum critical point. Vanadium sesquioxide is one
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Figure 10. Behaviour corresponding to figure 9 in the dissipative response. A clear dynamical
signature of the spin-glass transition remains, even sharpening in the quantum limit. (Following
reference [23].)

of these select systems where aT = 0 magnetic instability can be accessed using modest
laboratory pressures [10]. The low-temperature metal has an incommensurate, spiral spin-
density wave which partially gaps the Fermi surface and which bears no obvious relationship
to the antiferromagnetism in the insulator [28]. The magnetism in the metal is unstable
with respect to the application of modest hydrostatic pressures, which introduces a new
T = 0 phase boundary between antiferromagnetic metal and paramagnetic (Brinkman–Rice)
metal [29].

Building on the work of Hertz [30], Millis [31] has made quantitative predictions for
the behaviour of the magnetic phase boundary at the approach to the quantum critical
point. His prediction that the magnetic ordering temperature should approach zero as
{(P − Pc)/Pc}z/(z+1), wherez is the dynamical exponent, works well for the ferromagnet
ZrZn2 [32] with z = 3, but does not appear to account for the data on the antiferromagnet
(z = 2). In the case of the heavy-fermion compound Au-doped CeCu6 [11], pressure
depresses the Ńeel temperature linearly to zero, as opposed to the predicted sublinear
dependence. ForP > Pc, this system also displays robust ‘non-Fermi-liquid’ behaviour in
the susceptibility and the specific heat.

On a coarse pressure scale, compressed V2−yO3 similarly appears to approach itsT = 0
antiferromagnetic instability in linear fashion [10]. However, the resistivity and magnetic
susceptibility measurements of figure 11 reveal a distinct downward curvature in the close
vicinity of Pc. The influence of the quantum critical point has emerged, but these preliminary
data [33] are not sufficiently good to test whether the sublinear dependence ofTN on reduced
pressure is actually described by a 2/3 power. We note that the assignment ofPc = 7.3 kbar
is corroborated by independent measurements of the evolution of the magnetic moment with
pressure [33]. The questions remain open as to whether (i) the d electrons of V also exhibit
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Figure 11. The phase boundary for theT = 0 pressure-driven transition from spin-density wave
to paramagnet in highly correlated, metallic vanadium sesquioxide. Close toPc = 7.3 kbar, the
influence of the quantum critical point appears to manifest itself in the downward curvature of
TN(P ).

Figure 12. Far above the critical pressure,Pc = 1.51 kbar, for the Mott–Hubbard metal–insulator
transition in NiS1.56Se0.44, the conductivityσ exhibits the usualT 1/2-form characteristic of
electron–electron interactions in the presence of disorder (inset). The increasing slope with
decreasingP reflects an effective-mass enhancement at the approach to the transition. ForP

close toPc an unusual new functional form,T 0.22, appears forT < 1 K, representing the
dynamical signature of theT = 0 Mott–Hubbard critical point. (Following reference [34].)
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‘non-Fermi-liquid’ characteristics forP > Pc, or whether the f electrons of Ce and U are
uniquely so qualified, and (ii) whether such unconventional behaviour is tied to deviations
from the Millis predictions for the critical form for the magnetic phase boundary.

The intertwined dynamical and static response at a quantum critical point also comes
to the fore in our studies of theT = 0 metal–insulator transition in Ni(S, Se)2. This solid
solution of the semiconductor nickel disulphide and the metal nickel diselenide is one of
the few highly correlated, Mott–Hubbard systems without a strong first-order structural
distortion cutting off the critical behaviour at the metal–insulator transition. We start with
NiS1.56Se0.44 crystals just on the insulating side of the boundary and drive the system
metallic with pressure [34]. The static critical behaviour,σ(T = 0) ∼ {(P − Pc)/Pc}µ
with µ = 1.1 ± 0.2 is unsurprising, being common to all Anderson transitions save that
in uncompensated Si [35]. Rather, it is the dynamics, again right at theT = 0 critical
point, which reveals a telltale signature. We focus in figure 12 on the low-temperature
behaviour of the conductivity for pressures very near theT = 0 metal–insulator transition.
At pressures more than 0.2 kbar above the transition we observe the usualT 1/2-form of the
conductivity characteristic of electron–electron interactions in the presence of disorder [36].
However, forP ∼ Pc, the influence of the quantum critical point becomes apparent. A
new functional form,σ − σ(0) ∼ T 0.22, describes best the dynamical (finite-T or finite-ω)
response. This unusual exponent follows either from a simple two-parameter least-squares
fit (0.20 ± 0.07) for 0.035 K < T < 0.800 K or more precisely(0.22 ± 0.02) from a
dynamical scaling analysis [37] whereby we collapse the transport data for the six pressures
closest toPc andT < 1 K onto a universal scaling curve [34].

6. Conclusions

The T = 0 metal–insulator transition in disordered systems is the best known and most
studied quantum phase transition. In a few special cases, strong charge and spin correlations
coexist with an effectively continuous transition and it remains possible to explore the nature
of the critical point through the appropriate combination of static and dynamic probes.
Nonetheless, the field has been handicapped by the difficulty of readily identifying a suitable
order parameter. As an alternative, one can investigate theT = 0 physics of spin systems.
Magnetic phase transitions in the classical limit have been investigated extensively, and
as thermal fluctuations give way to quantum fluctuations, one expects that the generalized
magnetic susceptibility will continue to reveal the critical behaviour. When charge carriers
are present, theT = 0 critical point, combined with pronounced interactions of electronic
and/or magnetic character, gives rise to novel low-temperature phases. It is hard to know
what other than critical exponents can be theoretically modelled, but it is clear that high-
resolution measurements near theT = 0 transition need to be combined with studies of
the quantum-to-classical crossover. Finally, model systems such as the clean, insulating
magnet LiHoxY1−xF4 in a transverse magnetic field provide the means to contrast the
influence of thermal and quantum fluctuations in the same physical system. With varying
dipole concentration(x) as an extra degree of freedom, this material has the added potential
to establish the underpinnings for a quantitative understanding of the role of disorder and/or
frustration at the quantum critical point.
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